Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105728, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325740

RESUMO

Serine palmitoyltransferase (SPT) catalyzes the pyridoxal-5'-phosphate (PLP)-dependent decarboxylative condensation of l-serine and palmitoyl-CoA to form 3-ketodihydrosphingosine (KDS). Although SPT was shown to synthesize corresponding products from amino acids other than l-serine, it is still arguable whether SPT catalyzes the reaction with d-serine, which is a question of biological importance. Using high substrate and enzyme concentrations, KDS was detected after the incubation of SPT from Sphingobacterium multivorum with d-serine and palmitoyl-CoA. Furthermore, the KDS comprised equal amounts of 2S and 2R isomers. 1H-NMR study showed a slow hydrogen-deuterium exchange at Cα of serine mediated by SPT. We further confirmed that SPT catalyzed the racemization of serine. The rate of the KDS formation from d-serine was comparable to those for the α-hydrogen exchange and the racemization reaction. The structure of the d-serine-soaked crystal (1.65 Å resolution) showed a distinct electron density of the PLP-l-serine aldimine, interpreted as the racemized product trapped in the active site. The structure of the α-methyl-d-serine-soaked crystal (1.70 Å resolution) showed the PLP-α-methyl-d-serine aldimine, mimicking the d-serine-SPT complex prior to racemization. Based on these enzymological and structural analyses, the synthesis of KDS from d-serine was explained as the result of the slow racemization to l-serine, followed by the reaction with palmitoyl-CoA, and SPT would not catalyze the direct condensation between d-serine and palmitoyl-CoA. It was also shown that the S. multivorum SPT catalyzed the racemization of the product KDS, which would explain the presence of (2R)-KDS in the reaction products.


Assuntos
Serina C-Palmitoiltransferase , Serina , Sphingobacterium , Domínio Catalítico , Cristalização , Medição da Troca de Deutério , Elétrons , Hidrogênio/metabolismo , Palmitoil Coenzima A/metabolismo , Serina/análogos & derivados , Serina/metabolismo , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/metabolismo , Sphingobacterium/enzimologia , Sphingobacterium/metabolismo , Esfingosina/análogos & derivados , Esfingosina/biossíntese , Esfingosina/metabolismo , Estereoisomerismo , Especificidade por Substrato
2.
J Biol Chem ; 299(5): 104684, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030501

RESUMO

Serine palmitoyltransferase (SPT) is a key enzyme of sphingolipid biosynthesis, which catalyzes the pyridoxal-5'-phosphate-dependent decarboxylative condensation reaction of l-serine (l-Ser) and palmitoyl-CoA (PalCoA) to form 3-ketodihydrosphingosine called long chain base (LCB). SPT is also able to metabolize l-alanine (l-Ala) and glycine (Gly), albeit with much lower efficiency. Human SPT is a membrane-bound large protein complex containing SPTLC1/SPTLC2 heterodimer as the core subunits, and it is known that mutations of the SPTLC1/SPTLC2 genes increase the formation of deoxy-type of LCBs derived from l-Ala and Gly to cause some neurodegenerative diseases. In order to study the substrate recognition of SPT, we examined the reactivity of Sphingobacterium multivorum SPT on various amino acids in the presence of PalCoA. The S. multivorum SPT could convert not only l-Ala and Gly but also l-homoserine, in addition to l-Ser, into the corresponding LCBs. Furthermore, we obtained high-quality crystals of the ligand-free form and the binary complexes with a series of amino acids, including a nonproductive amino acid, l-threonine, and determined the structures at 1.40 to 1.55 Å resolutions. The S. multivorum SPT accommodated various amino acid substrates through subtle rearrangements of the active-site amino acid residues and water molecules. It was also suggested that non-active-site residues mutated in the human SPT genes might indirectly influence the substrate specificity by affecting the hydrogen-bonding networks involving the bound substrate, water molecules, and amino acid residues in the active site of this enzyme. Collectively, our results highlight SPT structural features affecting substrate specificity for this stage of sphingolipid biosynthesis.


Assuntos
Serina C-Palmitoiltransferase , Sphingobacterium , Humanos , Palmitoil Coenzima A/química , Palmitoil Coenzima A/metabolismo , Serina/química , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Sphingobacterium/enzimologia , Esfingolipídeos/metabolismo , Especificidade por Substrato
3.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 12): 408-415, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36458620

RESUMO

Serine palmitoyltransferase (SPT) catalyses the first reaction in sphingolipid biosynthesis: the decarboxylative condensation of L-serine (L-Ser) and palmitoyl-CoA to form 3-ketodihydrosphingosine. SPT from Sphingobacterium multivorum has been isolated and its crystal structure in complex with L-Ser has been determined at 2.3 Šresolution (PDB entry 3a2b). However, the quality of the crystal was not good enough to judge the conformation of the cofactor molecule and the orientations of the side chains of the amino-acid residues in the enzyme active site. The crystal quality was improved by revision of the purification procedure and by optimization of both the crystallization procedure and the post-crystallization treatment conditions. Here, the crystal structure of SPT complexed with tris(hydroxymethyl)aminomethane (Tris), a buffer component, was determined at 1.65 Šresolution. The protein crystallized at 20°C and diffraction data were collected from the crystals to a resolution of 1.65 Å. The crystal belonged to the tetragonal space group P41212, with unit-cell parameters a = b = 61.32, c = 208.57 Å. Analysis of the crystal structure revealed C4-C5-C5A-O4P (77°) and C5-C5A-O4P-P (-143°) torsion angles in the phosphate-group moiety of the cofactor pyridoxal 5'-phosphate (PLP) that are more reasonable than those observed in the previously reported crystal structure (14° and 151°, respectively). Furthermore, the clear electron density showing a Schiff-base linkage between PLP and the bulky artificial ligand Tris indicated exceptional flexibility of the active-site cavity of this enzyme. These findings open up the possibility for further study of the detailed mechanisms of substrate recognition and catalysis by this enzyme.


Assuntos
Serina C-Palmitoiltransferase , Trometamina , Cristalografia por Raios X , Fosfato de Piridoxal , Serina
4.
J Biochem ; 171(1): 27-29, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34750609

RESUMO

Since the discovery of D-amino acid oxidase (DAO) in 1935, many studies have been conducted without clarifying its 3D structure for a long time. In 1996, the crystal structure of DAO was determined, and it was shown that the catalytic bases required for the two catalytic mechanisms were not present in the active site. The crystal structure of DAO in complex with o-aminobenzoate was solved and is used for modeling Michaelis complex. The Michaelis complex model provided structural information leading to a new mechanism for reductive half-reaction of DAO. Currently, DAO is being researched for medical and applied purposes.


Assuntos
D-Aminoácido Oxidase , ortoaminobenzoatos , Aminoácidos , Catálise , Domínio Catalítico , D-Aminoácido Oxidase/metabolismo , Modelos Moleculares
5.
J Biochem ; 165(2): 185-195, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423116

RESUMO

Homoserine dehydrogenase from Thermus thermophilus (TtHSD) is a key enzyme in the aspartate pathway that catalyses the reversible conversion of l-aspartate-ß-semialdehyde to l-homoserine (l-Hse) with NAD(P)H. We determined the crystal structures of unliganded TtHSD, TtHSD complexed with l-Hse and NADPH, and Lys99Ala and Lys195Ala mutant TtHSDs, which have no enzymatic activity, complexed with l-Hse and NADP+ at 1.83, 2.00, 1.87 and 1.93 Å resolutions, respectively. Binding of l-Hse and NADPH induced the conformational changes of TtHSD from an open to a closed form: the mobile loop containing Glu180 approached to fix l-Hse and NADPH, and both Lys99 and Lys195 could make hydrogen bonds with the hydroxy group of l-Hse. The ternary complex of TtHSDs in the closed form mimicked a Michaelis complex better than the previously reported open form structures from other species. In the crystal structure of Lys99Ala TtHSD, the productive geometry of the ternary complex was almost preserved with one new water molecule taking over the hydrogen bonds associated with Lys99, while the positions of Lys195 and l-Hse were significantly retained with those of the wild-type enzyme. These results propose new possibilities that Lys99 is the acid-base catalytic residue of HSDs.


Assuntos
Homosserina Desidrogenase/química , Homosserina/química , NADP/química , Cristalografia por Raios X , Homosserina/metabolismo , Homosserina Desidrogenase/metabolismo , Modelos Moleculares , NADP/metabolismo , Conformação Proteica , Thermus thermophilus/enzimologia
6.
Sci Rep ; 8(1): 14228, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242198

RESUMO

The biosynthesis of heme is strictly regulated, probably because of the toxic effects of excess heme and its biosynthetic precursors. In many organisms, heme biosynthesis starts with the production of 5-aminolevulinic acid (ALA) from glycine and succinyl-coenzyme A, a process catalyzed by a homodimeric enzyme, pyridoxal 5'-phosphate (PLP)-dependent 5-aminolevulinate synthase (ALAS). ALAS activity is negatively regulated by heme in various ways, such as the repression of ALAS gene expression, degradation of ALAS mRNA, and inhibition of mitochondrial translocation of the mammalian precursor protein. There has been no clear evidence, however, that heme directly binds to ALAS to negatively regulate its activity. We found that recombinant ALAS from Caulobacter crescentus was inactivated via a heme-mediated feedback manner, in which the essential coenzyme PLP was rel eased to form the inactive heme-bound enzyme. The spectroscopic properties of the heme-bound ALAS showed that a histidine-thiolate hexa-coordinated ferric heme bound to each subunit with a one-to-one stoichiometry. His340 and Cys398 were identified as the axial ligands of heme, and mutant ALASs lacking either of these ligands became resistant to heme-mediated inhibition. ALAS expressed in C. crescentus was also found to bind heme, suggesting that heme-mediated feedback inhibition of ALAS is physiologically relevant in C. crescentus.


Assuntos
5-Aminolevulinato Sintetase/metabolismo , Caulobacter crescentus/metabolismo , Heme/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Coenzimas/metabolismo , Histidina/metabolismo , Humanos , Ligantes , Fosfato de Piridoxal/metabolismo , RNA Mensageiro/metabolismo
7.
Biochemistry ; 55(12): 1801-12, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26979298

RESUMO

Adenosine diphosphate ribose pyrophosphatase (ADPRase), a member of the Nudix family proteins, catalyzes the metal-induced and concerted general acid-base hydrolysis of ADP ribose (ADPR) into AMP and ribose-5'-phosphate (R5P). The ADPR-hydrolysis reaction of ADPRase from Thermus thermophilus HB8 (TtADPRase) requires divalent metal cations such as Mn(2+), Zn(2+), or Mg(2+) as cofactors. Here, we report the reaction pathway observed in the catalytic center of TtADPRase, based on cryo-trapping X-ray crystallography at atomic resolutions around 1.0 Å using Mn(2+) as the reaction trigger, which was soaked into TtADPRase-ADPR binary complex crystals. Integrating 11 structures along the reaction timeline, five reaction states of TtADPRase were assigned, which were ADPRase alone (E), the ADPRase-ADPR binary complex (ES), two ADPRase-ADPR-Mn(2+) reaction intermediates (ESM, ESMM), and the postreaction state (E'). Two Mn(2+) ions were inserted consecutively into the catalytic center of the ES-state and ligated by Glu86 and Glu82, which are highly conserved among the Nudix family, in the ESM- and ESMM-states. The ADPR-hydrolysis reaction was characterized by electrostatic, proximity, and orientation effects, and by preferential binding for the transition state. A new reaction mechanism is proposed, which differs from previous ones suggested from structure analyses with nonhydrolyzable substrate analogues or point-mutated ADPRases.


Assuntos
Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Manganês/química , Manganês/metabolismo , Sítios de Ligação/fisiologia , Cristalografia por Raios X , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
FEBS J ; 282(21): 4201-17, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26279274

RESUMO

The Brevibacillus brevis BBR47_28440 gene (referred to as ddlR) encodes an MocR/GabR family transcriptional regulator consisting of an N-terminal helix-turn-helix DNA binding domain and a C-terminal aminotransferase-like domain. The ddlR gene is located just upstream of the d-alanyl-d-alanine ligase gene (ddl) in the B. brevis genome, and these two genes form an operon. Gel-shift assays indicated that purified DdlR binds specifically to the DNA region that includes putative -35 and -10 regions of the ddlR promoter. A 6-bp inverted repeat that overlaps the -10 region of the ddlR promoter was found to be important for the binding. In vivo reporter assays confirmed that DdlR is an activator of the ddlR-ddl operon. Spectroscopic analyses indicated that purified DdlR is a pyridoxal 5'-phosphate binding transcriptional regulator that has dipeptide binding ability for d-alanyl-d-alanine, the enzymatic product of Ddl, and glycylglycine. DdlR is capable of forming a dipeptide-pyridoxal 5'-phosphate external aldimine, but it lacks aminotransferase activity. Bioinformatic analyses suggest that DdlR-mediated transcriptional regulation of ddlR and ddl may occur in multiple bacterial systems such as Actinobacteria and Bacillus species.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brevibacillus/genética , Brevibacillus/metabolismo , Peptídeo Sintases/metabolismo , Transativadores/genética , Transativadores/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência de Bases , Sítios de Ligação/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Dipeptídeos/metabolismo , Genes Bacterianos , Sequências Repetidas Invertidas , Dados de Sequência Molecular , Óperon , Filogenia , Regiões Promotoras Genéticas , Ligação Proteica , Homologia de Sequência de Aminoácidos , Transativadores/química , Ativação Transcricional
9.
J Biol Chem ; 285(16): 12133-9, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20164179

RESUMO

Selenocysteine lyase (SCL) catalyzes the pyridoxal 5'-phosphate-dependent removal of selenium from l-selenocysteine to yield l-alanine. The enzyme is proposed to function in the recycling of the micronutrient selenium from degraded selenoproteins containing selenocysteine residue as an essential component. The enzyme exhibits strict substrate specificity toward l-selenocysteine and no activity to its cognate l-cysteine. However, it remains unclear how the enzyme distinguishes between selenocysteine and cysteine. Here, we present mechanistic studies of selenocysteine lyase from rat. ESI-MS analysis of wild-type and C375A mutant SCL revealed that the catalytic reaction proceeds via the formation of an enzyme-bound selenopersulfide intermediate on the catalytically essential Cys-375 residue. UV-visible spectrum analysis and the crystal structure of SCL complexed with l-cysteine demonstrated that the enzyme reversibly forms a nonproductive adduct with l-cysteine. Cys-375 on the flexible loop directed l-selenocysteine, but not l-cysteine, to the correct position and orientation in the active site to initiate the catalytic reaction. These findings provide, for the first time, the basis for understanding how trace amounts of a selenium-containing substrate is distinguished from excessive amounts of its cognate sulfur-containing compound in a biological system.


Assuntos
Liases/química , Liases/metabolismo , Selênio/metabolismo , Enxofre/metabolismo , Substituição de Aminoácidos , Animais , Sequência de Bases , Domínio Catalítico/genética , Sequência Conservada , Cristalografia por Raios X , Cisteína/química , Primers do DNA/genética , Técnicas In Vitro , Liases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Multimerização Proteica , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato
10.
J Biol Chem ; 284(38): 25944-52, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19640845

RESUMO

D-serine is an endogenous coagonist for the N-methyl-D-aspartate receptor and is involved in excitatory neurotransmission in the brain. Mammalian pyridoxal 5'-phosphate-dependent serine racemase, which is localized in the mammalian brain, catalyzes the racemization of L-serine to yield D-serine and vice versa. The enzyme also catalyzes the dehydration of D- and L-serine. Both reactions are enhanced by Mg.ATP in vivo. We have determined the structures of the following three forms of the mammalian enzyme homolog from Schizosaccharomyces pombe: the wild-type enzyme, the wild-type enzyme in the complex with an ATP analog, and the modified enzyme in the complex with serine at 1.7, 1.9, and 2.2 A resolution, respectively. On binding of the substrate, the small domain rotates toward the large domain to close the active site. The ATP binding site was identified at the domain and the subunit interface. Computer graphics models of the wild-type enzyme complexed with L-serine and D-serine provided an insight into the catalytic mechanisms of both reactions. Lys-57 and Ser-82 located on the protein and solvent sides, respectively, with respect to the cofactor plane, are acid-base catalysts that shuttle protons to the substrate. The modified enzyme, which has a unique "lysino-D-alanyl" residue at the active site, also exhibits catalytic activities. The crystal-soaking experiment showed that the substrate serine was actually trapped in the active site of the modified enzyme, suggesting that the lysino-D-alanyl residue acts as a catalytic base in the same manner as inherent Lys-57 of the wild-type enzyme.


Assuntos
Trifosfato de Adenosina/química , Racemases e Epimerases/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimologia , Serina/química , Trifosfato de Adenosina/metabolismo , Animais , Catálise , Domínio Catalítico/fisiologia , Mamíferos , Estrutura Terciária de Proteína/fisiologia , Racemases e Epimerases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Serina/metabolismo , Homologia Estrutural de Proteína
11.
J Biochem ; 146(4): 549-62, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19564159

RESUMO

Serine palmitoyltransferase (SPT) is a key enzyme of sphingolipid biosynthesis and catalyses the pyridoxal 5'-phosphate (PLP)-dependent decarboxylative condensation reaction of l-serine with palmitoyl-CoA to generate 3-ketodihydrosphingosine. The crystal structure of SPT from Sphingobacterium multivorum GTC97 complexed with l-serine was determined at 2.3 A resolution. The electron density map showed the Schiff base formation between l-serine and PLP in the crystal. Because of the hydrogen bond formation with His138, the orientation of the Calpha-H bond of the PLP-l-serine aldimine was not perpendicular to the PLP-Schiff base plane. This conformation is unfavourable for the alpha-proton abstraction by Lys244 and the reaction is expected to stop at the PLP-l-serine aldimine. Structural modelling of the following intermediates indicated that His138 changes its hydrogen bond partner from the carboxyl group of l-serine to the carbonyl group of palmitoyl-CoA upon the binding of palmitoyl-CoA, making the l-serine Calpha-H bond perpendicular to the PLP-Schiff base plane. These crystal and model structures well explained the observations on bacterial SPTs that the alpha-deprotonation of l-serine occurs only in the presence of palmitoyl-CoA. This study provides the structural evidence that directly supports our proposed mechanism of the substrate synergism in the SPT reaction.


Assuntos
Serina C-Palmitoiltransferase/química , Sphingobacterium/enzimologia , Catálise , Cristalografia por Raios X , Modelos Moleculares , Palmitoil Coenzima A/química , Palmitoil Coenzima A/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Serina/química , Serina C-Palmitoiltransferase/metabolismo , Sphingobacterium/metabolismo , Esfingosina/análogos & derivados , Esfingosina/síntese química , Esfingosina/química
12.
J Bacteriol ; 191(8): 2630-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19218394

RESUMO

Fluoroacetate dehalogenase catalyzes the hydrolytic defluorination of fluoroacetate to produce glycolate. The enzyme is unique in that it catalyzes the cleavage of a carbon-fluorine bond of an aliphatic compound: the bond energy of the carbon-fluorine bond is among the highest found in natural products. The enzyme also acts on chloroacetate, although much less efficiently. We here determined the X-ray crystal structure of the enzyme from Burkholderia sp. strain FA1 as the first experimentally determined three-dimensional structure of fluoroacetate dehalogenase. The enzyme belongs to the alpha/beta hydrolase superfamily and exists as a homodimer. Each subunit consists of core and cap domains. The catalytic triad, Asp104-His271-Asp128, of which Asp104 serves as the catalytic nucleophile, was found in the core domain at the domain interface. The active site was composed of Phe34, Asp104, Arg105, Arg108, Asp128, His271, and Phe272 of the core domain and Tyr147, His149, Trp150, and Tyr212 of the cap domain. An electron density peak corresponding to a chloride ion was found in the vicinity of the N(epsilon1) atom of Trp150 and the N(epsilon2) atom of His149, suggesting that these are the halide ion acceptors. Site-directed replacement of each of the active-site residues, except for Trp150, by Ala caused the total loss of the activity toward fluoroacetate and chloroacetate, whereas the replacement of Trp150 caused the loss of the activity only toward fluoroacetate. An interaction between Trp150 and the fluorine atom is probably an absolute requirement for the reduction of the activation energy for the cleavage of the carbon-fluorine bond.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Burkholderia/química , Burkholderia/enzimologia , Hidrolases/química , Hidrolases/metabolismo , Acetatos/metabolismo , Substituição de Aminoácidos/genética , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Análise Mutacional de DNA , Fluoracetatos/metabolismo , Hidrolases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
13.
J Biochem ; 145(4): 421-4, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19155267

RESUMO

Serine racemase synthesizes d-serine, a physiological agonist of the NMDA receptor in mammalian brains. Schizosaccharomyces pombe produces serine racemase (spSR) that is highly similar to the brain enzyme. Our mass-spectrometric and X-ray studies revealed that spSR is modified with its natural substrate serine. spSR remains partially active even though its essential Lys57 inherently forming a Schiff base with the coenzyme pyridoxal 5'-phosphate is converted to N(6)-(R-2-amino-2-carboxyethyl)-l-lysyl (lysino-d-alanyl) residue. This indicates that the alpha-amino group of the d-alanyl moiety of the lysino-d-alanyl residue serves as a catalytic base in the same manner as the epsilon-amino group of Lys57 of the original spSR.


Assuntos
Biocatálise , Lisinoalanina/metabolismo , Racemases e Epimerases/metabolismo , Schizosaccharomyces/enzimologia , Alanina Racemase/metabolismo , Domínio Catalítico , Ativação Enzimática , Serina/metabolismo , Eletricidade Estática
14.
15.
Biochemistry ; 46(44): 12618-27, 2007 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17929834

RESUMO

Monofunctional histidinol phosphate phosphatase from Thermus thermophilus HB8, which catalyzes the dephosphorylation of l-histidinol phosphate, belongs to the PHP family, together with the PHP domain of bacterial DNA polymerase III and family X DNA polymerase. We have determined the structures of the complex with a sulfate ion, the complex with a phosphate ion, and the unliganded form at 1.6, 2.1, and 1.8 A resolution, respectively. The enzyme exists as a tetramer, and the subunit consists of a distorted (betaalpha)7 barrel with one linker and one C-terminal tail. Three metal sites located on the C-terminal side of the barrel are occupied by Fe1, Fe2, and Zn ions, respectively, forming a trinuclear metal center liganded by seven histidines, one aspartate, one glutamate, and one hydroxide with two Fe ions bridged by the hydroxide. In the complexes, the sulfate or phosphate ion is coordinated to three metal ions, resulting in octahedral, trigonal bipyramidal, and tetrahedral geometries around the Fe1, Fe2, and Zn ions, respectively. The ligand residues are derived from the four motifs that characterize the PHP family and from two motifs conserved in histidinol phosphate phosphatases. The (betaalpha)7 barrel and the metal cluster are closely related in nature and architecture to the (betaalpha)8 barrel and the mononuclear or dinuclear metal center in the amidohydrolase superfamily, respectively. The coordination behavior of the phosphate ion toward the metal center supports the mechanism in which the bridging hydroxide makes a direct attack on the substrate phosphate tridentately bound to the two Fe ions and Zn ion to hydrolyze the phosphoester bond.


Assuntos
Histidinol-Fosfatase/química , Thermus thermophilus/enzimologia , Amidoidrolases/química , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Histidinol-Fosfatase/metabolismo , Metais/metabolismo , Modelos Biológicos , Modelos Moleculares , Ligação Proteica
16.
Artigo em Inglês | MEDLINE | ID: mdl-17620717

RESUMO

DL-2-Haloacid dehalogenase from Methylobacterium sp. CPA1 (DL-DEX Mb) is a unique enzyme that catalyzes the dehalogenation reaction without the formation of an ester intermediate. A recombinant form of DL-DEX Mb has been expressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystal belongs to the hexagonal space group P6(3), with unit-cell parameters a = b = 186.2, c = 114.4 A. The crystals are likely to contain between four and eight monomers in the asymmetric unit, with a V(M) value of 4.20-2.10 A3 Da(-1). A self-rotation function revealed peaks on the chi = 180 degrees section. X-ray data have been collected to 1.75 A resolution.


Assuntos
Hidrolases/química , Hidrolases/genética , Methylobacterium/enzimologia , Cristalografia por Raios X/métodos , Regulação Enzimológica da Expressão Gênica , Hidrolases/biossíntese , Hidrolases/isolamento & purificação
17.
J Biol Chem ; 281(45): 34365-73, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16963440

RESUMO

Reversible 2,6-dihydroxybenzoate decarboxylase from Rhizobium sp. strain MTP-10005 belongs to a nonoxidative decarboxylase family. We have determined the structures of the following three forms of the enzyme: the native form, the complex with the true substrate (2,6-dihydroxybenzoate), and the complex with 2,3-dihydroxybenzaldehyde at 1.7-, 1.9-, and 1.7-A resolution, respectively. The enzyme exists as a tetramer, and the subunit consists of one (alphabeta)8 triose-phosphate isomerase-barrel domain with three functional linkers and one C-terminal tail. The native enzyme possesses one Zn2+ ion liganded by Glu8, His10, His164, Asp287, and a water molecule at the active site center, although the enzyme has been reported to require no cofactor for its catalysis. The substrate carboxylate takes the place of the water molecule and is coordinated to the Zn2+ ion. The 2-hydroxy group of the substrate is hydrogen-bonded to Asp287, which forms a triad together with His218 and Glu221 and is assumed to be the catalytic base. On the basis of the geometrical consideration, substrate specificity is uncovered, and the catalytic mechanism is proposed for the novel Zn2+-dependent decarboxylation.


Assuntos
Carboxiliases/química , Rhizobium/enzimologia , Zinco/metabolismo , Benzaldeídos/metabolismo , Sítios de Ligação , Carboxiliases/metabolismo , Catecóis/metabolismo , Cristalização , Cristalografia por Raios X , Hidroxibenzoatos/metabolismo , Modelos Moleculares , Oxirredução , Conformação Proteica , Especificidade por Substrato
18.
J Biochem ; 139(5): 873-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16751595

RESUMO

Comparison of the primary structures of pig kidney D-amino acid oxidase (DAO) and human brain D-aspartate oxidase (DDO) revealed a notable difference at I215-N225 of DAO and the corresponding region, R216-G220, of DDO. A DAO mutant, in which I215-N225 is substituted by R216-G220 of DDO, showed D-aspartate-oxidizing activity that wild-type DAO does not exhibit, together with a considerable decrease in activity toward D-alanine. These findings indicate that I215-N225 of DAO contributes profoundly to its substrate specificity. Based on these results and the crystal structure of DAO, we systematically mutated the E220-Y224 region within the short stretch in question and obtained five mutants (220D224G, 221D224G, 222D224G, 223D224G, and 224D), in each of which an aspartate residue is mutated to E220-Y224. All of the mutants exhibited decreased apparent K(m) values toward D-arginine, i.e., to one-seventh to one-half that of wild type DAO. The specificity constant, k(cat app)/K(m app), for D-arginine increased by one order of magnitude for the 221D224G or 222D224G mutant, whereas that for D-alanine or D-serine decreased to marginal or nil.


Assuntos
D-Aminoácido Oxidase/metabolismo , Rim/metabolismo , Animais , Sítios de Ligação/genética , Encéfalo/metabolismo , Clonagem Molecular , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/isolamento & purificação , D-Aspartato Oxidase/genética , D-Aspartato Oxidase/isolamento & purificação , D-Aspartato Oxidase/metabolismo , Humanos , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Engenharia de Proteínas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Suínos
19.
J Biochem ; 139(4): 789-95, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16672280

RESUMO

The three-dimensional structure of rat-liver acyl-CoA oxidase-II (ACO-II) in a complex with a C12-fatty acid was solved by the molecular replacement method based on the uncomplexed ACO-II structure. The crystalline form of the complex was obtained by cocrystallization of ACO-II with dodecanoyl-CoA. The crystalline complex possessed, in the active-site crevice, only the fatty acid moiety that had been formed through hydrolysis of the thioester bond. The overall dimeric structure and the folding pattern of each subunit are essentially superimposable on those of uncomplexed ACO-II. The active site including the flavin ring of FAD, the crevice embracing the fatty acyl moiety, and adjacent amino acid side chains are superimposably conserved with the exception of Glu421, whose carboxylate group is tilted away to accommodate the fatty acid. One of the carboxyl oxygens of the bound fatty acid is hydrogen-bonded to the amide hydrogen of Glu421, the presumed catalytic base, and to the ribityl 2'-hydroxyl group of FAD. This hydrogen-bonding network correlates well with the substrate recognition/activation in acyl-CoA dehydrogenase. The binding mode of C12-fatty acid suggests that the active site does not close upon substrate binding, but remains spacious during the entire catalytic process, the oxygen accessibility in the oxidative half-reaction thereby being maintained.


Assuntos
Acil-CoA Desidrogenases/química , Acil-CoA Oxidase/química , Ácidos Graxos/química , Fígado/enzimologia , Acil-CoA Desidrogenases/metabolismo , Acil-CoA Oxidase/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X/métodos , Ácidos Graxos/metabolismo , Ligação de Hidrogênio , Modelos Químicos , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Ratos , Especificidade por Substrato
20.
J Biosci Bioeng ; 99(6): 541-7, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16233829

RESUMO

A new family of NAD(P)H-dependent oxidoreductases is now recognized as a protein family distinct from conventional Rossmann-fold proteins. Numerous putative proteins belonging to the family have been annotated as malate dehydrogenase (MDH) or lactate dehydrogenase (LDH) according to the previous classification as type-2 malate/L-lactate dehydrogenases. However, recent biochemical and genetic studies have revealed that the protein family consists of a wide variety of enzymes with unique catalytic activities other than MDH or LDH activity. Based on their sequence homologies and plausible functions, the family proteins can be grouped into eight clades. This classification would be useful for reliable functional annotation of the new family of NAD(P)H-dependent oxidoreductases.


Assuntos
Archaea/enzimologia , Modelos Moleculares , NADH NADPH Oxirredutases/química , Sequência de Aminoácidos , Ativação Enzimática , Dados de Sequência Molecular , NADH NADPH Oxirredutases/classificação , Conformação Proteica , Dobramento de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...